Better Environment (Sustainable Development), Alexandria, Egypt, Dec. 1998, pp. 989-999. - [2] El-Minshawy, N., "Laboratory Studies on the Behavior and Removing Oil Spill from the Surface of a Calm Water", Port-Said Scientific Engineering Bulletin, Vol. 5, No. 2, 1993, pp. 198-210. - [3] El-Minshawy, N. and El-Sawaf, I.A., "New Design of An Oil Recovery Model with A Floating Weir Equipped with A Rotating Cylinder", Al-Azhar Engineering 3rd International Conference, [AEIC'93], Vol. 7, No. 1, Dec. 1993, pp. 107-120. - [4] El-Kayar, A., Hussein, M., Zatout, A. A. and Amer, A. A., "Removal of Oil from Stable Oil-Water Emulsion by Induced Air Flotation Technique Using Multi-Hole Air Distributors", Proc. of 2nd Int. Conf. On Role of Engineering towards Better Environment (Sustainable Development), Alexandria, Egypt, Dec. 1998, pp. 345-355. - [5] Flinta, J., Hernborg, G., and Stemback, A., "A Water-Jet Driven Two-Phase Flow Ejector Pump Performance Test", Symposium on Jet Pumps and Ejectors, BHRA Fluid Engineering, November 1972, Paper 2, pp. 19-33. - [6] Vyas, B. D., and Subir Kar, "Standardisation of Water Jet Pumps", Symposium on Jet Pumps and Ejectors, BHRA Fluid Engineering, November 1972, Paper 10, pp. 155-170. - [7] Cunningham, R. G., "Liquid Jet Pumps for Two-Phase Flows", Journal of Fluid Engineering, Trans. Of the ASME, June 1995, Vol. 117, pp. 309-316. - [8] Stepanoff, A. J., "Centrifugal-Jet Pump Water Systems", ch. 18 from [Centrifugal and Axial Flow Pumps], John Wiley & Sons Inc., New York, 2nd edition, 1957, pp. 402-424. - [9] Wakefield, A. W., "An Introduction to the Jet Pump", 4th edition, Publication of Genflo Jet Pump America, Inc. 1989. - [10] Thorvaldsen, G. S. and Wakefield, A. W., "Jet Pump Transfer Systems", Proc. of HYDROTRANSPORT 14, 1999, session8-paper2. # THE DESIGN OF A DESALINATION PLANT POWERED BY RENEWABLE ENERGIES K. Missirlis, E. Manoli, G. Arambatzis and D. Assimacopoulos National Technical University of Athens, Greece #### **Abstract** A system approach is presented for designing desalination plants. The central objective of the present methodology is the design of a combined user-defined renewable energy source and desalination technology, which will meet the regional water-demand. The selection of the appropriate solution is based on an assessment of costs and revenues from water and energy sales. The basic principles, methodology and algorithms are outlined. #### 1. Introduction In many regions around the world, demographic pressure together with economic development resulted into a rapid increase of water and energy demand. Renewable supplies are being threatened and natural resources are rapidly depleted. Electricity and water are vital components in the socio-economic development and the improvement of the living standards. New water supply schemes have to be developed and if the construction of large scale networks for water transportation from rich in water deposits regions is excluded, the remaining solutions in managing water problems in coastal and insular areas are water transportation by ships, construction of water reservoirs and sea water desalination. A rational management of water resources admits a number of decisions related to the available energy and water resources, water needs, actions to be used as well as their capabilities and limitations. The selection of the actions that match to each case depends mainly on the type and size of the problem, the cost and the environmental impacts. Water desalination, though a promising technological candidate, is an energy intensive process. Classical solutions based on conventional energy sources (fossil fuels, electricity) are costly and environmentally risky as they contribute to the already considerable pollution of the air, sea and fresh water resources. The problem becomes more acute in arid areas, with non-existent infrastructure and where electricity production costs are high. This is particularly true for the areas around the Mediterranean Basin where most of the population has limited access to electricity and faces severe potable water shortages. Renewable Energy Sources (RES), and in particular wind and solar energy can constitute a cheap and "clean" supplier of energy for desalination. In the last decade, a lot of research has been done in the field of applicability and reliability of desalination methods using renewable energy sources [1-11]. Furthermore, the results of relative research programmes, [12-13], show that the implementation of such desalination schemes can contribute successfully to the water shortage problems. Many reports referring to the assessment of the RES potential have also been presented [14-19]. Twidell [20] and Stone [21] provide information on the RES technologies. The technology arrangements proposed in the literature [9, 22] for desalination plants powered by RES are listed in Figure 1. When several alternative RES-desalination schemes are applicable in a specific case, the final decision concerning the most prominent combination should be based on criteria such as: - Commercial maturity of technology - Availability of local support - Simplicity of operation and maintenance of the system Figure 1. Renewable energy schemes for desalination. The above factors, in conjunction with available technical information (feed water quality, output water requirements as well as type of RES available) provide a starting point for the engineer or the decision maker. Table 1 depicts the most applicable RES-Desalination combinations according to the plant size, the type of the feed and product water. Table 1. Recommendations for RES-desalination arrangements | Water | Water | C C: | | | | |-----------------------|----------------|---|------------|---------------------------------|-------------------------------| | Output | Input | System Size | Small | Medium | Large | | - | mpat | | | $(50-250 \text{ m}^3/\text{d})$ | $(>250 \text{ m}^3/\text{d})$ | | Potable | Brackish Water | Conventional Energy + RO, ED | * | * | * | | Distillate | | Solar Distillation | * | | | | Potable | | PV – RO | * | 2 | | | | | PV-ED - | * | | | | | | Wind – RO | * | * | | | | | Wind – ED | * | * | | | Potable
Distillate | Sea Water | Conventional Energy + RO, ED,
MSF, VC, MED | : k | * | * | | | | Solar Distillation | * | | | | Potable | | PV – RO | * | | | | | | PV – ED | * | | | | | | Wind - RO | * | ;k | | | | | Wind – ED | * | * | • | | | | Wind – VC | | * | * | | Distillate | | Solar Thermal – MED | | * | * | | | | Solar Thermal – MSF | | | * | | | | Geothermal – MED | | * | * | | | | Geothermal – MSF | | | * | It must be clear that there is no straightforward way to select the appropriate RES-desalination technology. Rather an iterative approach is most probable to be followed, involving careful assessment of the above criteria and technical parameters. Furthermore, each candidate option should be further screened through constraints such as site characteristics and financial requirements. At this paper, a procedure is developed which defines the optimum solution through the comparison of various desalination processes and the available energy sources. The selection of the appropriate solution is based on an assessment of costs and Fifth International Water Technology Conference IWTC 2000, Alexandria, Egypt revenues from water and energy sales. The maturity of the relevant RES technologies has indicated the solar-photovoltaic and wind options in the present work. The estimation of the energy requirements of a desalination plant powered by RES is based on the approach, first proposed by Hanafi [1]. However, many new elements have been added and the whole method has been improved and modified for the present work. In Section 2, the basic methodology and structure of the tool are analysed. In Appendix 1 and 2, information on the modelling of desalination processes and RES potential exploitation is given. # 2. The Design Approach The most important parameters, which determine the feasibility of a RES-Desalination project, are the capacity and total cost of the entire plant. The basic data-input for the design problem refer to: - Regional water demand - Area needed by the RES park and - RES-potential of the selected region. Results are provided for the: - Annual energy flows, - Water production cost, and - Investment cost for the entire unit. The System Design approach evaluates different technology arrangements, which can satisfy the water-demand. The user defines the type of RES and type of desalination process that will be used as well as the grid connection or use of energy-storage devices. The following algorithm conducts the evaluation procedure of the selected technology combination: - 1. Identification of water-shortage, RES potential and available area for the installation of the RES unit. - 2. Calculation of the capacity and the energy needs of the desalination plant, according to the water demand and the selected desalination process. - 3. Design of the RES-park that will cover the maximum possible of the energy requirements of the system, taking into account the RES potential of the selected region and the area size restrictions. - 4. Estimation of water production and annual energy flows. 5. Cost estimation based on the investment cost for the Desalination and RES units, the diesel generator and storage devices. The overall design algorithm is presented in Figure 2. Figure 2. Design algorithm. The selection of the appropriate desalination technique is based on an overall assessment of the available water sources (brackish and sea-water) in both quantity and quality. If brackish water sources are available, their desalination must be preferred, since, due to low salinity, energy requirements are much lower. Usually brackish water sources are available in inland regions, whereas seawater desalination is mainly employed in coastal sites. The selection of the appropriate desalination technique differs according to the type and potential of the local RES, remoteness, feed water salinity, required product water quality, and the water demand that is to be covered which defines the plant capacity. One must note for example that distillation processes are used for the production of distillate water while membrane processes are used for the production of potable water. Usually, autonomous systems are selected mainly for remote areas where a grid connection is impossible or very expensive to acquire and water demand is usually rather low. The main desirable features for these systems are low cost, low maintenance requirements, simple operation and of course very high reliability. On the other hand grid-connected plants are preferred for medium or large plants. In these cases a grid connection can provide the plant with the energy needed at periods of low RES energy supply while offering the possibility to sell excess energy to the local grid. The selection of the appropriate desalination technique depends mostly on feed water and product water quality and secondly on the size of the unit. Both Electrodialysis and reverse osmosis are used for the production of potable water whereas Vapour Compression leads in the production of distillate water. Electrodialysis can only be applied for brackish water desalination since high-energy requirements for large salinities inhibit the development of the process for seawater desalination. On the opposite Vapour Compression cannot be applied for brackish water sources and is mainly reserved for seawater desalination and for medium or large units. Reverse Osmosis can be applied in all cases. The type of RES to be used with a particulate desalination process depends on the plant capacity and the specific energy consumption of the desalination technique. For small size plants (1-50m³/day) both wind and photovoltaic cells can be used, keeping in mind the limited experience for ED-PV systems. Storage cells may be applied only for very small capacities (up to 5 m³/day) and for autonomous systems since high investment costs inhibit their development for larger units. For medium (50-250 m³/day) and large (>250m³/day) plant capacities use of PV is not recommended due to the large foundation costs and low efficiency of PV cells that increase the required solar park area. Only wind energy exploitation can be applied in this case and again there is a limitation: wind-RO and wind-VC autonomous plants are not applicable due to high storage and fuel costs and a grid connection should be established. # 2.1 Design of the Desalination Unit The algorithm estimates the capacity of the desalination unit and the energy consumption needed to meet the water demand of the selected area. Water demand has been defined but an additional parameter can be specified, that is the percentage of water demand that is to be satisfied, in reality. It can take values from 1% up to 200%, in order to ensure the best possible response in temporary demand increases or the possibility of exploiting extra water supplies not yet known. The second important parameter of this section is the specific energy consumption $[kWh/m^3]$ of the desalination process. Its value either can be set by the user or estimated by the mass and energy balances of the desalination plant. The design variables for each process are listed in Table 2 and the details of the algorithm are given in *Appendix 1*, *Sections 1.1 and 1.2*. Table 2. Design characteristics of the available desalination processes | Desalination process | Input Data | |----------------------|--| | Reverse osmosis | Recovery Ratio | | | Water Density | | | Applied Pressure | | Vapour Compression | Recovery Ratio | | | Temperature and Salinity of: a) product b) feed c) brine | | Electrodialysis | Specific energy demand | #### 2.2 Design of the RE Supply Subsystem Having defined the total energy needs of the unit, the module proceeds in the design of the wind or solar-park that will provide the energy for the operation of the desalination unit. Necessary data for this section are the RES potential and the available area for the installation of the RES unit. The algorithm is differentiated according to the type of RES to be exploited, the possible grid connection or the use of storage devices. ## 2.2.1 Wind-Park Design The wind potential, which is defined by the average wind speed and the K-Weibull distribution of the selected region, is exploited using wind turbines. Additional parameters are needed, such as the wind-turbine (WT) type, its power curve (power produced as a function of wind speed); hub-height, diameter etc. The algorithm used for the wind-park design is outlined in Figure 3 and the mathematical formulation for wind potential exploitation is presented in *Appendix 2*, Section 2.1. 508 Figure 3. Wind-Park Design The estimation of the wind turbines needed and, consequently, the required windpark area is conducted through the yearly energy production of a single wind turbine. Then, the minimum number of WT is defined, taking into account the energy needs of the desalination plant and the available area for the wind-park. The latter is performed through the following checks: • If the required area is equal to or smaller than the one available, the algorithm proceeds in the estimation of the annual energy production, the exploitable energy by the desalination unit and the energy needed from auxiliary energy sources. • If the required area is larger than the one available then the number of wind turbines is gradually reduced until the calculated wind-park area is found equal or smaller than the one available. Afterwards, the algorithm proceeds in the estimation of the annual energy flows as it is described above. ## One must note the following: - 1. The wind-park area, in all cases, is the minimum area that can be covered by the specified number of wind turbines, taking into account the number and diameter. However, due to wake development, the power produced by the wind park can be smaller than the one estimated (maximum reduction of 20% per WT). - 2. The energy available for the desalination unit depends on wind speed fluctuations. This fact makes the use of an auxiliary energy source (grid or diesel generator) obligatory even if the total energy balance is positive. #### 2.2.2 Solar-Park Design Solar radiation is converted to electricity by photovoltaic cells and therefore the solar-park design is differentiated accordingly, by selections concerning grid connection and use of storage batteries. The design algorithm used in the case of a grid-connected and stand-alone (without storage-batteries) park is presented in Figure 4. Figure 4. Design of grid-connected and autonomous (without storage cells) solar park The energy needs of the desalination unit, combined with the average yearly solar radiation and the efficiency of the photovoltaic cells, define the required solar-park area. The final solar-park area and the energy produced by photovoltaic cells are determined through the comparison of the required and the available solar-park area. Then, as before, the tool proceeds in the estimation of the annual energy flows. The use of storage batteries increases the energy demand of the unit due to energy losses during charging and discharging. The design of storage devices is based on the number of days for a continuous and stand-alone operation. This is defined by the user, and indicates the time that storage can fully provide the desalination unit with the energy needed. Other parameters concerning the storage batteries are their voltage, which, by default, for this type of application is set at 48V, efficiency (85%) and depth of discharge (65%). The additional energy demand, due to storage losses, is used in the definition of the required solar park area and at the calculation of the annual energy flows. The mathematics for the solar energy transformation are presented in *Appendix 2, Section 2.2*. # 2.3 Estimation of Water Production and Annual Energy Flows Water production is estimated by the capacity of the desalination plant. An energy balance of the total energy produced by RES, the energy requirements of the desalination unit, and the energy available for its operation is formed. The algorithm for the analysis of the energy flows for the entire unit and the determination of auxiliary energy supply needs is outlined in Figure 5. The algorithm makes the following checks: - If the energy supplied by RES meets the energy requirements of the desalination unit, then there will be no energy from the auxiliary energy sources (such as electricity grid). - Possible energy shortage should be met by the electricity grid or in the case of stand-alone units, by a diesel generator. - Energy surplus can be sold to the grid (obviously, only for grid-connected systems). Figure 5. Algorithm for the estimation of the annual energy flows and plant structure #### 2.4 Financial Evaluation The evaluation of the financial profitability of the combined RES-desalination system is based on the Profitability Index Method proposed by Chabot [23]. This method has been used for the assessment of the premiums required to secure the profitability of wind energy investments. In the present work the Profitability Index Method is used to specify the water-selling price based on the overall discounted cost of the RES-Desalination system. The algorithm for the financial evaluation of the proposed investment is based on the following steps: - Analytical estimation of the investment, operational and maintenance costs over - Definition of the financing parameters of the investment (discount rate, life time, construction period, available grants or loans) - Estimation of the overall discounted cost of water - Definition of the required Profitability Index which determines the minimum NPV per unit of initial investment - Estimation of the water-selling price based on the profitability index and the overall discounted cost. The estimated water price can be compared to the consumer water prices in order to specify whether the proposed investment is competitive towards conventional methods used to cover the water demand. Figure 6 presents the algorithm for the evaluation of the water selling price. Figure 6. Algorithm for the estimation of the water-selling price #### 3. Conclusions A system approach was presented for designing desalination plants powered by renewable energies. The selection of the appropriate system arrangement was based on an assessment of costs and revenues from water and energy sales. The basic principles, methodology and algorithms were outlined. ## 4. Acknowledgement The authors wish to acknowledge the support from the EU-DGXII through the INCO Programme. The work presented herein is part of the research carried out in the framework of the project "Mediterranean Cooperation for Water Desalination Policies in the Perspective of a Sustainable Development (MED-CO-DESAL)". #### 5. References - Abdalla Hanafi, "Desalination using renewable energy sources", Desalination, 97, pp. 339-352, 1994. - Al-Mutaz, I.S., Al-Ahmed, M.I., "Evaluation of solar powered desalination processes", Desalination, 73, pp. 181-190, 1989. - Gomkale, S.D., "Solar desalination as a means to provide Indian villages with drinking water", Desalination, 69, pp. 171-1767, 1988. - Hamed, O.A., Eisa, E.I., Abdalla, W.E., "Overview of solar desalination", Desalination, 93, pp. 563-579, 1993. - Kabouris J., Contaxis G.C., Zouros N., Tortoreli M., Perrakis K. "Feasibility study for the development of an unconventional generation system for water desalination", Proc. EWEC'94, 1050-1055, 1994. - Manwell, J.F., McGowan, J.G., "Recent renewable energy driven desalination system research and development in North America", Desalination, 94, pp. 229-241, 1994. - Nfaoui, H., Burer, J., Sayigh, A.A.M., Dunn, P.D., "Modelling of a wind/diesel system with battery storage for Tangiers, Morocco", Renewable Energy, Vol. 4, No. 2, pp. 155-167, 1994. - 8. Pappas C.A. "Water supply and desalination in Greece", Desalination & Water Reuse 4/2, 8-20, 1994. - Rados, K.G., Assimacopoulos, D., Zervos, A., "Application Possibilities of Wind-Reverse Osmosis desalination plants in Greek islands", Proc. MED Conference, Santorini, 1996. - Robinson, R., Ho, G., Mathew, K., "Development of a reliable low-cost reverse osmosis desalination unit for remote communities", Desalination, 86, pp. 9-26, 1992. - Warfel, C.G., Manwell, J.F., McGowan, J.G., "Techno-economic study of autonomous wind driven reverse osmosis desalination systems", Solar & Wind Technology, Vol. 5, No. 5, pp. 549-561, 1988. - "Towards the Large Scale Development of Decentralised Water Desalination", PRODESAL Final Report, EEC, DG XII, APAS, RENA CT94-0005, 1996. - "Decision Support System for the Integration of Renewable Energies into Water Desalination Systems", REDES Final Report, EEC, DG XII, APAS, RENA CT94-0058, 1996. - 14. "The European Renewable Energy Study", EEC, DG XVII, 1994. - 15. "European Wind Turbine Catalogue", EEC, DG XVII, 1994. - Gorgoulis M.B., Rados K.G., Voutsinas S.G. "Windiest: A support tool for decisionmaking on the utilisation of wind energy at a local level", Proc. EWEC'94, 322-327, 1994. - Perrakis K, Tassiou R, "National Incentives for deployment of renewables in Greece", ALTENER Seminar - Market Incentives to renewable energies - Lisbon, March 1996. - Tsiligiridis G, "Time and spatial analysis of energy use and of consequent air pollutant emission in the period 1960-1990 in Greece", Ph.D. thesis, Mechanical Engineering Department, AUTH, 1995 - 19. Magal B.S, "Solar power engineering", McGraw-Hill, New Delhi, 1990. - 20. Twidell J, Weir T, "Renewable energy sources", University Press, Cambridge, (1986). - 21. Stone L. S., "Photovoltaics: Unlimited electrical energy from Sun", reprinted from Physics Today http://www.nrel.gov/research/pv/dpcs/pvpaper.html (1993). - 22. European Commission, Joule-Thermie Programme, "Desalination Guide Using Renewable Energies", (1998). - 23. Chabot B., "From Costs to Prices: How to determine Tariffs to Secure a Private Development of Wind Power", European Wind Energy Conference, "Wind Energy for the Next Millenium", March 1999, Nice – France. # Appendix 1: Modelling Desalination Processes ## I. Vapour Compression The fundamental concept of this process is that after vapour has been produced, it is compressed in order to increase its pressure and therefore its saturation temperature. Then, the vapour is returned to the evaporator where it is used as the heating vapour for the evaporation of more liquid. The main equipment for the VC desalination process is the evaporator, the heat exchanger and the compressor (Figure 7). The feed water is preheated in a heat exchanger or a series of heat exchangers by the hot discharge of the brine and the distillate. The hot feed water enters the evaporator, where it is heated up to its boiling point and some of it is evaporated. The vapour formed in the evaporator enters then the compressor where its pressure and consequently its saturation temperature are raised. Afterwards the compressed vapour is fed back to the evaporator to be condensed, providing the thermal energy to evaporate the applied seawater on the other side of the tubes. The distilled water produced by the condensation leaves the plant through the pre`-heaters as the product water. The efficiency of the entire process depends on the pressure of the compressed vapour. Therefore, the compressor is the large energy consumer of this process and the power produced by RES is mainly used for its operation. Input data needed for the estimation of the energy consumption of the process are the desalination plant capacity, the recovery ratio of the process, as well as the temperature and the specific heat capacity (defined by water salinity and temperature) for flux 3 (product), flux 5 (feed) and flux 7 (brine). The simplified model and the mathematical formulation of the vapour compression process are described in the following paragraphs.